Cross-linked bioreducible layer-by-layer films for increased cell adhesion and transgene expression.
نویسندگان
چکیده
The effect of cross-linking layer-by-layer (LbL) films consisting of bioreducible poly(2-dimethylaminoethyl methacrylate) (rPDMAEMA) and DNA is examined with regard to rigidity, biodegradability, cell adhesion, and transfection activity using 1,5-diiodopentane (DIP) cross-linker. DIP chemically reacts with the tertiary amines of rPDMAEMA, altering the chemical composition of these LbL films. The result is a change in surface morphology, film swelling behavior, and film rigidity, measured with AFM and ellipsometry. It is found that the apparent Young's modulus is increased more than 4 times its original value upon cross-linking. Cross-linking mass is additionally confirmed with a quartz crystal microbalance with dissipation (QCM-D). Comprehensive analyses of these experimental values were investigated to calculate the degree of cross-linking using the rubber elasticity theory and the Flory-Rehner theory. Additionally, the Flory-Huggins parameter, chi, was calculated. Good agreement in the two methods yields a cross-linking density of approximately 0.82 mmol/cm(3). The Flory-Huggins parameter increased upon cross-linking from 1.07 to 1.2, indicating increased hydrophobicity of the network and formation of bulk water droplets within the films. In addition, the effects of cross-linking on film disassembly by 1,4-dithiothreitol (DTT) are found to be insignificant despite the alteration in film rigidity. Mouse fibroblast cells and smooth muscle cells are used to study the effect of cross-linking on cell adhesion and cell transfection activity. In vitro transfection activity up to seven days is quantified using secreted alkaline phosphatase (SEAP) DNA. Film cross-linking is found to enhance cell adhesion and prolong the duration of cellular transfection. These results contribute to the development of bioreducible polymer coatings for localized gene delivery.
منابع مشابه
Tuning the mechanical properties of bioreducible multilayer films for improved cell adhesion and transfection activity.
A simple approach to the mechanical modulation of layer-by-layer (LbL) films is through manipulation of the film assembly. Here, we report results based on altering the salt concentration during film assembly and its effect on film rigidity. Based on changes in film rigidity, cell adhesion characteristics and transfection activity were investigated in vitro. LbL films consisting of reducible hy...
متن کاملLayer-by-layer films with bioreducible and nonbioreducible polycations for sequential DNA release.
Layer-by-layer (LbL) films containing cationic polyelectrolytes and anionic bioactive molecules such as DNA are promising biomaterials for controlled and localized gene delivery for a number of biomedical applications including cancer DNA vaccine delivery. Bioreducible LbL films made of disulfide-containing poly(amido amine)s (PAAs) and plasmid DNA can be degraded by redox-active membrane prote...
متن کاملCOMPARISON OF PROPERTIES OF TiN/TiCN AND PLASMA NITRIDING/TiCN FILMS DEPOSITED ON THE TOOL STEEL BY PULSED DC- PACVD
In this work, TiN/TiCN & PN/TiCN multilayer films were deposited by plasma- assisted chemical vapour deposition (PACVD). Plasma nitriding (PN) and TiN intermediate layer prior to coating leads to appropriate hardness gradient and it can greatly improve the mechanical properties of the coating. The composition, crystalline structure and phase of the films were investigated by X-ray d...
متن کاملNano-scale control of cellular environment to drive embryonic stem cells selfrenewal and fate.
Embryonic stem cells (ESC) are pluripotent cells capable to give rise to any embryonic cell lineage. In culture, these cells form colonies creating their own niche. Depending upon the molecular and physico-chemical environment, the pluripotent cells oscillate between two metastable states of pluripotency either reminiscent of the inner cell mass of the embryo or the epiblast, a stage of develop...
متن کاملNano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement
Objective(s): Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis. Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 114 16 شماره
صفحات -
تاریخ انتشار 2010